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Summary

Singularity conditions that arise during structural optimization

can seriously degrade the performance of the optimizer. The

singularities are intrinsic to the formulation of the structural

optimization problem and are not associated with the method

of analysis. Certain conditions that give rise to singularities

have been identified in earlier papers, along with a proposition

to alleviate the consequences of their presence (refs. 1 to 3).

These singularities were global in nature, encompassing the

entire structure. Further examination revealed more complex

sets of conditions in which singularities occur. Some of these

singularities are local in nature, being associated with only

a segment of the structure. Moreover, the likelihood that one

of these local singularities may arise during an optimization

procedure can be much greater than that of the global sin-

gularity identified earlier. This paper provides examples of these

additional forms of singularities. It also gives a framework

in which these singularities can be recognized. In particular,

the singularities can be identified by examination of the stress-

displacement relations along with the compatibility conditions

and/or the displacement-stress relations derived in the

integrated force method of structural analysis.

Introduction

Structural optimization methodologies based on mathe-

matical programming techniques require constraint-gradient

information (ref. 4). Nonlinear optimization proceeds
iteratively, and at each iteration a direction vector <_ is

generated in the design variable space. The formation of this

direction vector utilizes the gradients. Consider, for example,

the coefficient matrix [H] used in a method of feasible

directions, as given by Best, (ref. 4) to find the direction vector

where

 m+i
0 - (I)

IHI = I/1 - Wgl IlVglrlv+il-nlvgl r (2)

[7gl =

Ogi Og2 3g_

3Xi 3Xl 3Xi

3X2 3X2 3X2

Og i 3g 2 3g_

3X,, 3X,, 3X,,

(3)

where Vf is the gradient of the merit function,

Xo= -0.5qllm St'+iH+ l (4)

and K is the number of active constraints used in the computation
of the direction vector.

In equation (3), xi represents the ith design variable, and

gj represents the jth constraint value (e.g., the nondimen-
sionalized element stress or nodal displacement). Here, we

consider only sizing design variables (e.g., the cross-sectional

areas of truss elements).

Now, if the rank of the gradient matrix [XTg] is less than
K, then the derived composite matrix [[Vglr[Vg]] will be

singular. Thus, the coefficient matrix [H] is not defined, and

any direction generated from equation (1) would be spurious.

Gradient projection methods that use the matrix [H] can suffer

the same consequences, and similar remarks can be made about

other techniques that use constraint-gradient information in

this way. Computer codes can react to this situation by pre-
mature termination (sometimes with indications of multiple

overflow errors) or divergence. These observations are intrinsic

to the specification of the constraint formulation in the struc-

tural optimization problem and are not associated with any

specific analyzer.
Clearly, the rank of the gradient matrix [_g] is less than

or equal to the smaller of the number of active constraints K

and the number of design variables n. Thus, whenever the



number of active constraints is larger than the number of design

variables, the rank of IVg] will be less than x (since n < K),

and singularities in [H] will occur. However, as pointed out
earlier (refs. 1 to 3), whenever the number of active stress

and displacement constraints is more than the number of dis-

placement degrees of freedom of the structure (which is often

significantly less than n), singularities will also be introduced.

This condition depends only on the number of active

constraints, irrespective of where on the structure the active

constraints appear, and will be referred to as a global
singularity condition.

Linear Functional Dependence Among
Constraints

Constraint sets formed during structural optimization may

exhibit functional dependence. Moreover, this functional depen-

dence may be linear in form. That is, for certain sets of

constraint functions of the design variable x'(e.g.,Ig,(x'),

g2(x) -..... X) ), there exists a set of constants [c_i[, not all
zero, such that

_oo.g j (X') = 0 lbr all

j=l

(5)

Note that any individual function &(X) may be nonlinear
in the independent variable _. This linear functional dependence,

in turn, generates linear dependence among constraint gradients

(which leads to singularities). Differentiating equation (5) with

respect to X gives

(6)

where Vgj is the gradient of the function gj with respect to _.

Constraint Dependence for a Three-Bar Truss

To illustrate the existence and importance of linear functional

dependence among constraints, consider a three-bar steel truss

with a Young's m_xtulus E of 30 000 ksi and a strength a0 of
20 ksi (fig. 1). For each load condition, the truss can have

three stress and two displacement constraints. The stresses and

displacements are functions of the cross-sectional areas of the

bar elements _ and either (or both) type(s) of constraints may

appear in the active constraint set. It can be shown that, for

the three-bar truss, the following relationships hold for each
load condition:

(ol - 02 + a3) = 0.0 (7b)

where Xj(_), the jth nodal displacement, and oi(_), the ith
element stress, are related to the behavior constraints and are

functions of the three-component design variable _ (the areas

of the elements). Here, f is the length of the second element
(see fig. 1).

Note that these relationships hold for all values of the design

variable (since Xi does not appear explicitly in eqs. (7)).

Furthermore, linear functional dependence (or independence)

of a set of behavior variables Io,,Xjl implies the linear
dependence (or independence) of their associated constraint
gradients (ref. 5).

Since we have three equations in five unknown functions

(a I, a2, o3, XI, and X2), given any two of the five functions

(except for the o2, X2 pair), the other three functions can be

determined. The observation that any set of more than two

constraints is linearly functionally dependent corresponds to

_1_ _l-- e -I- e -I
2 3 4

>,

1 x 1, Px

Load condition

1 2

Px 50 0

Py 1O0 125

Load, kip

Figure 1, Three-bar truss. (Elements are circled, nodes are not.)



TABLE L--RANKS OF SEVERAL CONSTRAINT-GRADIENT

MATRICES FOR THE THREE-BAR TRUSS

[Element areas: 1.00, 9.30, and 3.67 in. 2]

Case Constraint set

Number Constraints

5 IOl,O2,o3,XI,X21

3 i I!01,02,03s

0 _02,X2 s

Rank of

constraint-

gradient

matrix

Nature of

singularity

Global

Global and local

Local

the global singularity condition identified earlier (rel_. 1 to 3).
The linear functional dependence among stresses, also noted

earlier (refs. 2 and 3), is clearly indicated by equation (7b).

Use of the knowledge of this global singularity to restrict the
active constraint set to two constraints is, however, insufficient

to guarantee linear functional independence. In particular,

equation (7a.2) involves only one element stress (02) and one

nodal displacement (X2) that would produce a singularity
because of their linear functional dependence. We would

expect, then, that the rank of the constraint-gradient matrix
formed by (1) taking all five constraints would be two, (2)

taking the three stress constraints would certainly be two, and

(3) taking 02 and X, would be one. Table ! shows the results

of performing a singular value decomposition on the three

constraint-gradient matrices indicated.

Use of the IFM Equations for Identification of Singularities

The integrated force method (IFM) is a structural analysis
tool based on the method of forces through which global

singularities in structural optimization were identified earlier
(refs. 1 to 3). It will be used here to identify additional types

of singularities.
Let us consider, more generally, an arbitrary truss under

a single load condition that has n stress degrees of freedom

and m displacement degrees of freedom. We will designate

this structure as truss (n,m), following the convention in the

IFM (ref. 6). The following relations can be derived from the

governing equations used in the IFM (see appendix B):

o = [B]X (8a)

,_= IJl _" (8b)

0": It] a" (8c)

where the matrices [B], []], and [6"] are independent of the

design variables; have full ranks of m, m, and r, respectively;
have dimensions of n × m, m x n, and r x n, respectively;

and r = n - m. The choice of design variables depends on

the structural elements chosen for the design, but typically these
variables are taken as the element cross-sectional areas for truss

elements, the moments of inertia for flexural elements, and

the shear area and polar moment of inertia for elements with
torsion.

Equation (8a) is referred to as the set of stress-displacement
relations and is derived from the force equilibrium equations.

Equation (8b) describes the displacement-stress relations.

Equation (8c) is the set of stress compatibility conditions. We

note here that equations (8b) and (8c) can be used to derive

equation (8a), and vice-versa. From the stress compatibility

conditions (eq. (8c)), we can see that the set of all stress con-
straints is linearly functionally dependent. These equations are

also consistent with the observation regarding global singu-

larities made earlier (that the maximum number of stress and

displacement constraints which can form a set of linearly

independent functions is m) (ref. 1). However, more subtle

cases of singularities can arise by linear functional dependence

among subsets of stress constraints (see eq. (8c)) or stress and

displacement constraints (see eq. (8a) or (8b)). These

singularities will be referred to as local singularities, since the

relations are derived by consideration of local segments of the
structure. This localization is reflected in the banded nature

of the equilibrium and compatibility matrices, [/_] and [t],

respectively.

Constraint Dependence for a 20-Bay Truss

For a more comprehensive example of how easily these

more subtle lbrms of singularities can arise, consider the

20-bay truss shown in figure 2. The truss(101,80) consists

of 20 bays, each defined by six adjunct elements. The truss

has 101 elements and has 101 stress and 80 displacement

degrees of freedom. It has 21 compatibility conditions
(n - m = 21). Using the evidence tound earlier of possible

global singularities, one should restrict the set of active
constraints to be no more than the number of displacement

degrees of freedom (n/ = 80). The first two cases in table 11
show the rank of the resulting gradient matrix when more than

80 constraints are active. One might consider the restriction

of limiting the number of active constraints to 80 (out of the

maximum of 181 prescribed behavior constraints) to be rather

mild since it might be expected that fewer than 80 constraints

would be active, anyway. However, this restriction is insuffi-

cient to prevent all singularities that can arise.
Consider, first, the stress-displacement relations of the

structure, which are defined through the modified equilibrium
matrix [/_]. A few typical stress-displacement relations for the

truss (101,80) are as follows:

O I = i_l,2X 2 (9a)

o4 = D4.sXs + [,_.6X6 (9b)

088 = bgs,69X69 q- _288,70X70 -I- _)88,71X71 + _)88.72X72 (9c)

0"90 : bg0,69X69 + _)90,73X73 (9d)

From Figure 2, we can see that the stress in element l, 0"_,

and the vertical displacement at node 2, X2, are directly
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Figure 2.--20-bay truss. Displacement constraint numbering for all nodes t such that 2 -< t < 40 is as follows: (I) for horizontal displacements, the constraint

index is 20- I)-I; (2)for vertical displacements, the constraint index is 2(t- I). (Elements are circled, nodes are not. I

related as in equation (9a). Similarly, equation (9c) can be

derived by examining the connectivity of element 88 in the

18th bay in figure 2. The stress in that element 088 can be

determined from the horizontal and vertical components of the
displacements at node 36, X69 and )(70, and at node 37, Xvl

and X72. The other relations can be derived in a similar way.

Since each relation is derived by examining a small subset of

the structure, the bandwidth of the [BI matrix will be small,

and the singularities produced can be considered to be local

singularities.

The element areas, which are the design variables for this

problem, do not appear explicitly in equations (9), since the

coefficients are independent of those areas. Taking, as

examples, the sets of constraints [oi,X21, {04,Xs,X6t, lO-ss,X69,

Xvo,XTI,X721, and lo9o,X69,X73J as active constraint sets, would

produce rank-deficient gradient matrices Wgl and singular [HI

matrices (see cases 3 to 6 in table II for numerical veri-

fication). These clearly demonstrate that subsets containing

many fewer active constraints than the global singularity

restriction of at most 80 stress and displacement constraints

can cause singularities. Next, consider the stress compatibility

conditions (CC) of the truss(101,80), which includes one

external CC and 20 individual bay CC. The external CC,

which has 20 terms, has the following form:

"CI,202 -_- CI,707 + C1,12012 -'l- ..... q'- _1,97097 = 0 (10a)

The 20 individual bay compatibility conditions, each of

which involves six stresses, have the following cyclic lorm:

C2,101 + C2.202 + C2,303 + C2,40"4 + C2.505 + C2.606 = 0

(10b. l)

C3.606 + _3.707 -{- C3.8OS 4- C3.909 + _3.10010 + C3.1 loll := 0

(10b.2)

C21,96096 + C21,97097 + ¢":21,98098 + ¢-_21,99099 + t7:2 l, 1000 I00

+cel.mloml =0 (lOb.20)



TABLE II.--RANKS OF SEVERAL CONSTRAINT-GRADIENT MATRICES FOR

THE 20-BAY TRUSS

IThe element areas are pseudorandom numbers between 1.0 and I 1.0 in. 21

Case Constraintsel

Number Constrainls

I 181 IAII stresses and displacements1

2 101 _,AII stresses(

3 2 iol,,Y:l

4 3 _a_,Xs.X_, I

6 3 kr_j.X_,o:_',

7 6 Io I ,% ..... o_,',

8 8 )ot.a 2..... a_.o:o,X_l
9 6 io31,a32..... o_}

10 20 ',o?,o7.ol: ..... 097(

Rank of

constraint-

gradient

malrix

8O

80

1

2

4

2

5

7

5

lg

Nature of

singulari D

Global

Global

Local

Again, these relations (eq. (10)) are independent of the

design variables. The sparsity, and (in the case of the 20 bay

compatibility conditions) the bandedness, of the IQ matrix

is produced from the localized character of the relations. The

external CC (eq. (10a)) ensures that the total deformation

between the two boundaries (nodes I and 41) is zero (see fig.

2(b)). The 20 bay CC's ensure that the bars which form the

bay deform in a consistent manner, such that all bars fit

together before and after deformations, without inducing any

residual strains (see, for example, fig. 2(c)).

Taking the first six stress constraints lol,o2 ..... %1 will

produce a constraint-gradient matrix with a rank less than six

(see case 7, table I1). In fact, taking any set of constraints that

include these six will produce a rank-deficient constraint-

gradient matrix (e.g., see case 8, table 1I). Other examples

of singularities can be produced with sets of constraints that

include 1o31,032..... a._61or Ia2,aT,012 ..... a97 t. These have also

been verified numerically (see cases 9 and 10, table IlL Note,

here, that the 20 stresses [a2,aT,o12 ..... 0"971 correspond to the
flexural load path for the structure under gravity loads and

therefore are very likely to all become active, creating
singularities during structural optimization procedures.

Discussion

We have seen how singularities can (sometimes quite easily)

arise in structural optimization because of rank deficiencies

in constraint-gradient matrices that are used in mathematical

programming techniques to determine new search directions.

In some variants of these algorithms, starting from an identity

matrix, the matrix I/q] or related matrices are constructed by

using constraint gradients following an update procedure
(ref. 4). Often these matrices are initially well behaved, but

become poorly conditioned (or singular) as the solution
approaches the optimal point, thus requiring re-initialization.

Noting that, typically, few constraints are active initially and

that many may be active near the optimal solution, it is

reasonable to hypothesize that the singularities observed are

due to linear dependence among the active constraints, Once

again, it seems very important to ensure that the active

constraints chosen constitute a linearly independent set of
functions.

Although generating conditions in which singularities can

arise is very easy using equations (8), producing an algorithm

to ensure linear functional independence among stress and

displacement constraints is not so straightforward. One naive

approach, which would be applicable to any structural analysis

formulation, might be to find the rank of the matrix formed

by the gradients of the active constraint set. If this matrix were

rank deficient, the offending constraint(s) could be deleted,

or replaced with some "less active," but (what one would hope

are) independent, constraint(s).

A far less costly, and more elegant, approach would be to

examine the stress-displacement relations, the displacement-

stress relations, and the compatibility conditions of the IFM

(eqs. (8)). Although the stress-displacement relations alone

would be sufficient, it would often be advantageous to use one,

or both, of the other two relationships. For example, when

only stress constraints occur in the active constraint set,
examination of the CC alone would be sufficient to determine

whether or not the set was linearly functionally independent.

Details on a procedure to ensure linear functional independence
among active constraints will not be given here, but will be

provided in a subsequent paper (Guptill, J.D. ; Patnaik, S.N. ;

and Berke, L.: Identification and Preclusion of Singularities

during Structural Optimization: to be published).

Multiple Load Conditions

With multiple load conditions that are mutually indepcndent,

it can be shown that the stress gradients for any single element

are mutually independent. To illustrate this result with a simple
numerical example, we tcu_k two load conditions for the three-



TABLE Ill.--RANKS OF SEVERAL CONSTRAINT-

GRADIENT MATRICES FOR MULTIPLE

LOAD CONDITIONS

[Element areas: 1.00, 9.30, and 3.67 infl]

Case Constraint set

Number Load

conditions"

I 2

I 2 loll loll
2 2 ',a2[ iXf,

3 3 IoI,o:r ',o_I

aload ctmdltums arc dot]ned in ligtJrc I

Rank of

constraint-

gradient

matrix

TABLE IV.--RANKS OF SEVERAL CONSTRAINT-GRADIENT

MATRICES IN THE PRESENCE OF FREQUENCY CONSTRAINTS

IElement areas: 1.00, 9.30. and 3,67 in. 21

Case Constraint set Rank of constraint-

gradient matrix

Number Constraints With Without

frequency frequency

constraints constraints

6 lol,o2,o3,Xi,X2,[", 3 2

4 I,oI ,oz,osfl 3 2

3 _,02,X2,II 2 1

bar truss shown in figure 1. The linear independence of the

stress gradients associated with the first element under the two

load conditions is demonstrated in table III. Furthermore,

although o2 and X 2 were found to be linearly functionally

dependent under one load condition, taking 02 from load
condition 1 and )(2 from load condition 2 produces a gradient

matrix of full rank (see table III). Moreover, taking two

linearly functionally independent constraints from one load

condition and one from another produces a gradient matrix

of rank three. An example of this is also shown in table III.

Frequency Constraints

Frequency constraints appear to be linearly functionally

independent of stress and displacement constraints. The fre-

quency constraintfis inversely proportional to the frequency
w where

, :7 [hqL F isi? 
(11)

and X,_, [K], and [MI are the displacement mode shape, the

stiffness matrix, and the mass matrix, respectively, associated
with the displacement method (ref. 8); and F_, ISi, and [MT-I

are the force mode shape, the IFM governing matrix, and the

IFM mass matrix, respectively (ref. 9). It seems unlikely that

the frequency constraint could ever be written as a linear

combination of the stress and displacement constraints.

Numerical examples indicating the linear independence of

frequency constraint gradients are shown in Table IV.

Structures Other Than Trusses

For nontruss structures, the complexity is increased for

several reasons, including (1) the presence of more than one

design variable per element, (2) the presence of multi-axial

stress states, and (3) more complicated IFM equations. An
initial introduction to the complexity of singularity issues for

nontruss structures has been reported (ref. 9).

Conclusions

Singularity conditions can arise in structural optimization

because of linear functional dependence among active stress

and displacement constraints. These conditions can be global

or local in nature. Local singularities can occur more fre-

quently than global singularities. Linear functional dependence

can be seen among sets of constraints containing very small
percentages of the prescribed behavior constraints.

The presence of linear functional dependence can best be

determined by examination of the equations derived in the

integrated force method. If the active constraint set is

composed of stress constraints only, examination of the IFM

compatibility conditions is sufficient. When the active con-

straint set includes both stress and displacement constraints,

either the stress-displacement relations or a combination of

displacement-stress relations and the compatibility conditions

need to be examined. Frequency constraints appear to be

linearly functionally independent of the stress and displacement

constraints. Stress and displacement constraints that cross

multiple (mutually independent) load conditions are linearly

functionally independent. Although more complicated, it would

be of benefit to extend this analysis of singularities to nontruss
structures.

Lewis Research Center

National Aeronautics and Space Administration
Cleveland, Ohio, November 12, 1991
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Appendix A

Symbols

cross-sectional area of the ith element

equilibrium matrix

modified equilibrium matrix

(i,j)th element of the modified equilibrium matrix

compatibility matrix

modified compatibility matrix

(i,j)th element of the modified compatibility matrix

Young's modulus

Young's modulus of the ith element

diagonal matrix of Young's moduli scaled with

lengths

internal forces

force mode shape associated with IFM frequency

analysis

frequency constraint

concatenated flexibility matrix

jth constraint value

coefficient matrix in a method of feasible

directions

identity matrix

deformation coefficient matrix

modified deformation coefficient matrix

stiffness matrix associated with the displacement
method

characteristic dimension of the three-bar truss

length of the ith element

mass matrix associated with the displacement
method

IFM mass matrix

number of displacement degrees of freedom

number of design variables: number of stress

degrees of freedom

load vector

r

lSl

L

L

K

_0

Oo

Oi

Xi

cO

6

[Vgl

Vgj

Og/Ox,.

[.l r

1.1 I

1.11

modified load vector

number of strain compatibility conditions

IFM governing matrix

displacement vector

jth nodal displacement

displacement mode shape associated with the

displacement method

set of constants

deformation vector

initial deformation vector

effective initial deformation vector

node number

number of active constraints used in the

calculation of the direction vector

scaling factor

stress vector

strength

stress of the ith element

design variable vector

ith design variable

direction vector

frequency

null vector

gradient of the merit function

constraint-gradient matrix

gradient of the jth constraint

partial derivative of the jth constraint with

respect to the ith design variable

transpose of a matrix

inverse of a matrix

inverse transpose of a matrix



Appendix B

Key Integrated Force Method Equations

The key equations of the integrated force method (IFM) as

related to the singularity issue are presented!n this appendix.
The IFM considers all the internal n forces, F, as the simultan-

eous unknowns. The m force equilibrium equations,_[B]F= P,
and the r strain compatibility conditions, [C][G]F = 0, are

concatenated to obtain the governing equations of the method
(refs. 10 and I1) as

where 1_, is the length of the ith element, A i iS the area of the

ith element, and Ei is the Young's modulus of the ith element.

Stress-Displacement Relations

The stress-displac_ement relations can be obtained from the
general relations (13 = [G]F = [B] 7_.) with appropriate spe-
cialization for trusses as

(B1)

where [B] is the m x n equilibrium matrix, [C] is the r × n

compatibility matrix, [G] is the n × n concatenated_flexibility
matrix that links deformations 3" to forces/_ as (/3 = [G]F),

is the m-component load vector, 6R is the r_-component

effective initial deformation vector defined as 6R = -[C]130,
30 is the n-component initial deformation vector, [S! is the

n x n governing matrix, and m + r = n. The matrices [B],

[C], [G], and IS] are banded and have full row ranks of m,

r, n, and n, respectively. For simplicity, initial deformations
are neglected here (131)= 0).

The solution of equation (BI) yields the n forces, F. The

m displacements, X, are obtained from the forces by

_" = IJ][G]F (B2)

where [J] is the m x n deformation coefficient matrix defined

as ([J] = m rows of IS]-7"). For static analysis, the matrix [J]

is independent of element areas. For trusses, the flexibility

matrix [G] is a diagonal matrix, and its elements are

_'= [/_l._ (B4)

where [/_] is a sparse, banded matrix with [/_] = [E_][B] 7, and

E,/fi are the nonzero elements of the diagonal matrix [Ee].

Displacement Stress Relations

The displacements .,_can be written in terms of the stresses as

where lJ] = lJ][Ee] i

Compatibility Conditions in Terms of Stresses

The strain compatibility conditions ([C][G]/_ = O) can be

written as stress compatibility conditions:

[_o= 0" (B6)

where [Q is a sparse matrix with [Q = [C][Ed-i. The [/_],

[J], and [q matrices can all be considered independent of

element areas for static analysis.

g(i,i) - for i = 1,2 ..... n (B3)
A,Ei
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